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Domestic consumers can reduce their electricity expenditures by shifting 
their loads to slots of low power usage during demand response (DR) in a 
smart grid (SG) power system. Efficient shifting of loads can be used to 
reduce the peak-to-average (PAR) of power network, which is highly 
desirable for the reliability of SG. Methodologies available in literature only 
address the problem of power scheduling for a small set of consumers and 
underperforms for large population. This paper presents clustered 
community based home energy management system (CCHEMS), which 
performs better for a huge consumer set. CCHEMS is based on clustering 
consumer devices according to operating time overlap. Activation time slots 
(ATS) of clustered devices under user defined constraints are subjected to 
particle swarm optimization (PSO) to attain optimum power demand. Real 
time electricity price (RTEP) and modified inclined block rate (IBR) is 
employed to contain the power demand under appropriate limits. Results 
confirm that CCHEMS is better than non-clustered optimization, 9% in cost 
reduction and 24% in PAR trimming for a population of 1000 consumers. 
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1. Introduction 

*High-tech advances in the field of domestic 
appliances and industrial automations have caused a 
continuous swelling in electric power demand. 
Electric power needs will be more inconsistent in 
future due to growing domestic and industry 
electricity requirements. The conversion of many 
manual and fossil fuel powered appliances/devices 
into electric powered devices, e.g. Plug-in Electrical 
Vehicles (PEV) (Deilami et al., 2011), is also causing 
increase in the power needs. Randomly varying 
profile of the electricity demand and the absence of 
compliance at consumer side require continuous 
modification on the electricity generation side. The 
efficiency of power plants is adversely affected by 
peak time power requirements and fluctuations 
therein. The power grid has to develop into a more 
smart form called Smart Grid (SG) to incorporate 
flexibility available in the grid and preserve an 
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appropriate operation of electricity supply in an 
economic fashion (Ipakchi and Albuyeh, 2009). 

Power Scheduling is one of the vital solutions to 
ensure reliability and stability of SG. Power 
scheduling system for domestic consumer 
appliances/devices are usually referred to as home 
energy management system (HEMS) (Kim et al., 
2015). As a significant component of the SG, HEMS 
has become increasingly imperative, because 
electricity usage of domestic sector contributes for a 
substantial amount of total electricity consumption. 
However, a conservative HEMS has to be modified to 
play its part on reducing peak-to-average (PAR) of 
SG. Grid can generate a controlling signal known as 
demand response (DR) that indicates altered 
electricity power price (EPP) at the times of peak 
power usage. HEMS respond to demand response 
(DR) to reduce the gap between electricity demand 
and supply by reshaping the power usage pattern 
(PUP) of domestic user through appliance 
rescheduling. This process is referred as demand 
side management (DSM) due to load management 
being done at consumer end. 

Electricity prices are transmitted to domestic 
users in DR, so that they can schedule their devices 
to avoid peak rates. The DR process mostly 
comprises of time of use pricing (TOUP), critical 
peak pricing (CPP), and real-time electricity pricing 
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(RTEP) used by Zhao et al. (2013). The EPP in first 
two schemes is usually determined in advance and 
the process of price evaluation can be carried out as 
frequent as three times per year. Whereas the EPP in 
RTEP varies at per hour basis, which can mirror the 
current PUP or the power generation cost. Though 
the CPP augments the EPP of TOUP when the PUP 
has sharp peaks, but being based on hourly basis 
RTEP is more flexible than others. Abushnaf et al. 
(2015) reduced electricity cost based on RTEP; 
however, the intent behind DR is not only cost 
reduction for consumers at peak power demand 
periods, but also requires prevention of higher 
electricity demand even at the periods of low EPP. 
From this perspective main flaw in RTEP 
implementation is that it can result in an increased 
PAR at low price time periods by moving peak PUP 
to periods with lower EPP. 

Xiong et al. (2011) proposed a suitable objective 
of total electricity consumption for all devices is 
given; however, the scheme used for reduction in 
power for separate devices is not specified. 
Mohsenian-Rad and Garcia (2010) reduced 
electricity cost and peak power demands 
concurrently, but with unrealistic assumptions. 
Hardware and software DSM schemes presented by 
Lien et al. (2007), Sierra et al. (2007) and Chen et al. 
(2009) allow the consumer to make use of rule based 
decision making for operating their devices, but the 
optimization perspective is localized only. Kim and 
Poor (2007) presented a power and cost reduction 
methodology for both non-interruptible and 
interruptible devices; however, sharps peak can still 
arise at time slots of low electricity rates. Power 
scheduling algorithms proposed by Abushnaf et al. 
(2015), Ozturk et al. (2013), and Adika and Wang 
(2014) are based on load prediction models, 
whereas, Chavali et al. (2014) relied on penalty 
terms and pricing schemes for domestic power 
scheduling. The excessive loads can induce 
instability in power network, which can result in a 
complete power failure. Therefore, blend of RTEP 
with Inclining Block Rates (IBR) is essential (Zhao et 
al., 2013). IBR model uses a penalty term; electricity 
rate in RTEP is topped with a factor λ>1 if a PUP of 
house is gone beyond a predefined threshold 
(Rastegar et al., 2012). However, this combination 
only ensures a controlled PUP for a single house. 
Sharp peaks in PUP of whole system can still arise 
when cluster of consumers operate their devices 
around same time slots. This problem gets worse 
when the consumer population is very large. 
Algorithms available in literature have not addressed 
power scheduling task for large sets of consumers.  

In this paper we present a power management 
scheme: clustered community based home energy 
management system (CCHEMS) that can significantly 
decrease the domestic consumer electricity expenses 
and reduce PAR even for a large consumer 
population. CCHEMS banks on grouping consumers 
into communities and then assembling their devices 
into clusters. Particle swarm optimization (PSO) is 
separately applied to each cluster to find the 

optimum starting time of all devices in that cluster. 
Fitness function of PSO is accompanied by a modified 
IBR, which can prevent sharp peaks in PUP at all 
times. PAR is significantly improved when the power 
scheduling of devices with overlapping operating 
time period is subjected to PSO along with a 
modified IBR. Threshold for IBR is adjusted to 
accommodate for the PUP of whole community. PSO 
is replaced with genetic algorithm (GA) for 
comparison with Zhao et al. (2013). Simulation 
results show that the proposed algorithm is very 
effective in PAR and cost reduction for a consumer 
set as large as 1000 houses irrespective of PSO or GA 
being used.   

Rest of the paper is presented in following 
modules. Section 2 shows the framework of 
clustered community based HEMS (CCHEMS). 
Section 3 illustrates the proposed approach of 
CCHEMS in combination with IBR and PSO. Section 4 
presents the simulation results and conclusion 
follows in Section 5. 

2.  Framework of clustered community based 
HEMS 

Main objective of any DSM scheme is PAR 
reduction up to a level where both ESC and 
consumer can gain benefit from it. For this purpose 
we propose to transmit DR from the Main Grid (MG) 
to substations and then each substation distributes 
DR to consumers via community centers according 
to their quota. Structure of community based scheme 
for HEMS utilization in SG is shown in Fig. 1.  

Electricity power demand of communities is 
controlled by RTEP. In our scheme DR data would be 
conveyed to each user and community for electric 
power scheduling. When electricity management 
system (EMS) set up at consumer end; they can use 
this data through electricity management controller 
(EMC) that incorporates both EPP and consumer 
device operation priorities to effectively optimize the 
PUP at the community center. In our research, the 
term EMC is used for its own and the home gateway 
(HG) function. EMC can use home area network 
(HAN) for communication of control signal to 
automatically operated devices (AODs) at home, and 
connection with the community EMS (CEMS) at the 
community center can also be established. Power 
scheduling at a locally centralized center is the main 
divergence from the other schemes. Benefits of 
community based clustered optimization is shown in 
the simulation results. 

Effective use of EMS can only be attained by the 
wide use of home devices/appliances which are 
smart. A data processor and a transceiver can be 
used with the devices which are not smart. The info 
received by the transceiver is analyzed by the data 
processor and it allows the device to operate for the 
period of appropriate PUP. In fact, some of such 
appliances are already available. Some nifty 
refrigerators allow consumers to connect itself 
through a smart phone. However EMC could be used 
to control the smart devices centrally. EMS at 
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consumer end largely consists of smart meters (SM), 
advanced metering infrastructure (AMI), EMC, HG, 
consumer appliances/devices, and dedicated input 

device (DID). The communication setup of EMS using 
wireless HAN is demonstrated in Fig. 2. 

 

 
Fig. 1: Community based HEMS Framework 

 

 
Fig. 2: HEMS Structure 

 

AMI is one of the vital components of the SG, 
which facilitates the communication between the SM 
and the ESC (Aggarwal et al., 2010). Additionally the 
AMI is liable for gathering and communicating 
consumption info conveyed from distributed 
consumer’s SM to the ESC and also for the provision 
of the DR from ESC to consumer SM. SM can be 
placed both in and outside of the consumer premises 

serving as bridge between EMC and AMI. Main 
function of the SM is to evaluate the numerical 
figures related to the power consumption of the 
consumer devices and the implementation of 
scheduling planned by the EMC in the light of 
received DR.  

Zhao et al. (2013) divided consumer 
devices/appliances into two categories; first consist 
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of those which are manually operated and second set 
has devices which can be remotely operated referred 
here as manually operated devices (MODs) and 
AODs respectively. MODs are only operated 
manually whenever the consumer require their 
operation (e.g., lights, fans, electric irons). Kim and 
Poor (2007) further divided AODs in to two types; 
one with operation that can be interrupted (e.g. 
washing machines); second type with non-
interruptible operation (e.g. rice cooker). In this 
research we only consider the AODs with non-
interruptible operation and MODs are not 
considered due to the manual operation. 

In our design we further assume that AODs only 
interact with the EMC and there is no 
communication between AODs. All the activations of 
AODs will be scheduled by the EMC at day start. 
Numerous wireless communication methods for 
establishing connection between the HG and SM, 
such as Z-Wave, ZigBee, Wi-Fi, or a wired protocol 
are available. In this paper, we merge the SM and HG 
in to the EMC, which is responsible for receiving the 
RTEP from power utility through CEMC. RTEP taken 
from Ameren Illinois Power Co (2015) for 11th April, 
2015 is shown in Fig. 3. 

 

 
Fig. 3: RTEP on 11th April 2015 

 

Consumers can transmit their list of AOD 
parameters such as device operation time start 
(DOTS), device operation time end (DOTE), device 
load, and operation time length (OTL) to CEMS 
through their EMC. Optimal PUP parameters devised 
by the CEMS can be transmitted back to consumer 
EMCs hence to respective AODs through the bridge 
of HAN and HG. The process of optimum power 
scheduling can be supervised for alteration either by 
a DID or with the help of remote control such as a 
computer or smart phone through internet if the 
user require to operate any device without any 
delay. 

3. Proposed methodology for CCHEMS 

This section presents the basic methodology 
applied in CCHEMS for power scheduling of 
consumer AODs at community level. Primary 
technique for this DSM is load shifting to 
accommodate for reduction in PAR. Objective of this 
DSM is to lower the PAR as much as possible, so that 

power profile has smooth transitions. Lower PAR 
and smooth power profile aids in reduced consumer 
expenses as well as the ESC. Effective reduction in 
PAR and enhanced stability of the whole system can 
be achieved when subjected to a blend of RTEP and 
IBR. Usually, the formulations for such optimization 
scenarios have nonlinear behavior, so they can be 
solved with algorithms like GA and PSO. Under 
normal operating conditions there are several power 
plants in ESC with one main unit running most of the 
times to serve the needs of base load. Secondary 
units of ESC are operated only when base unit 
cannot fulfill the power requirements. Turning 
additional units on and off frequently is a technical 
hassle and effects the production costs drastically. 
This scenario also requires the power profile to be as 
consistent as possible. Keeping this as a primary 
objective we present the CCHEMS. 

We start elaborating our algorithm with 
introducing the hour division. In an RTEP setup EPP 
is charged differently on hourly basis. If the AODs are 
scheduled on the hourly basis of RTEP the degree of 
freedom for activation time slot (ATS) slot is 
reduced, also a device may need to start and finish 
its job well short of an hour. On the other hand if we 
take a very short time slot, heuristic optimization 
techniques like GA and PSO may not converge due to 
large possibilities of optimization parameters. 
Therefore, we have divided the whole day in to 144 
time slots, i.e. 6 slots per hour, 10 minutes for each 
slot. If a device needs to run for 90 minutes it will 
take on 9 slots for its operation. If a device requires 
operating for 25 minutes, it will be considered to run 
for 3 time slots for power scheduling purpose, 
because a device finishing 5 minutes earlier further 
reduces the actual PUP. As the day is divided into 
144 time slots we define the symbol τ: τ ∈ Τ ≜ 
{1,2,…,144} and Di is used to denote the devices of ith 
house. Each device dik ∈ Di has the power 
consumption profile Pdik = [pdik(1), pdik(2), …, pdik(144) ], 
where pdik(τ) is the power  rating of device dik in the 
τth time slot normalized by a constant 6 to convert 
the power consumption KWH into KW time slot and 
k∈{1,2,…,16}. Fig. 4 shows the relationship between 
the parameters to be set in by the consumer for 
every AOD.  

 

 
Fig. 4: Device parameter constraint 

 

We assume that the consumer preferences of 
whole community are available with the CEMS. All 
AODs need to complete their ldik (OTL of kth device of 
ith house) long operation within the range of [ρdik 
(DOTS of kth device of ith house), σdik (DOTE of kth 
device of ith house)]. Here ρdik is DOTS of kth device 
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of ith house and σdik is DOTE of kth device of ith 
house). Adjustable parameter is ATS denoted by  

 
𝑡𝑑𝑖𝑘 ∈ [𝜌𝑑𝑖𝑘 , 𝜎𝑑𝑖𝑘 − 𝑙𝑑𝑖𝑘]                  (1) 

 
Here tdik is ATS of kth device of ith house and we 

need to find its optimum value for every AOD subject 
to the constraint given in Eq. 1. 

3.1 Particle swarm optimization 

Kennedy and Eberhart (1995) proposed PSO as 
an iterative process based on a population of 
particles. PSO uses particles as contender solutions 
and allows them to flock around the optimum 
solution space. Flight curves followed by the 
particles are affected by the best particle solution 
(Global best Gb) and also by their own best position 
(Particle best Pb) they moved through. Contender 
solutions moving around the search space by 
updating their velocities according to Eq. 2 and 
positions according to Eq. 3. 

 
𝑣𝑗,𝑟

𝑡+1 = 𝜔𝑣𝑗,𝑟
𝑡 + 𝑐1𝑟𝑎𝑛𝑑()(p𝐺𝑏,𝑗

𝑡 − p𝑗,𝑟
𝑡 ) +

𝑐2𝑟𝑎𝑛𝑑()(p𝑃𝑏,𝑗
𝑡 − p𝑗,r

𝑡 )
                 (2) 

𝑝  𝑗,𝑟
𝑡+1 = 𝑝  𝑗,𝑟

𝑡 + 𝑣  𝑗,𝑟
𝑡+1                                                 (3) 

 
Here Pr(p1,r, p2,r, …, pn,k) and Vr(v1,r, v2,r, …,vn,r) are 

the position and velocity of the rth  particle. The 
coefficients ω, c1, and c2 are the particle weight, 
momentum of Pb and pull towards Gb respectively, 
and rand() is a random number generated uniformly 
in the interval [0,1]. Initialization of velocities and 
particle position is done randomly subject to the 
constraint given in Eq. 1. Subsequently, the same 
population that has been initially generated is 
expected to become better & better after each cycle 
stirring around the population intelligence. Each 
particle can improve its own version, if the newer 
one is better than the Pb, new version replaces Pb. If 
the Pb is better than Gb, it also replaces Gb. When 
the process is finished by any of the termination 
criteria Gb is returned as the final solution. 

3.2 Genetic algorithm 

GA is also an iterative meta-heuristic algorithm 
for optimization based on inheritance. Algorithm 
starts with a randomly initialized population set of 
chromosomes consisting of genes. Each chromosome 
acts as a candidate solution. Every chromosome has 
a cost evaluated on the basis on a fitness function. 
Fitness function and chromosomes may include any 
constraint of underlying problem. Crossovers and 
mutations are performed in each iteration for all 
chromosomes followed by fitness evaluation. The 
process is continued until a termination criterion is 
met, and the best chromosome is returned as the 
final solution. 

3.3 Modified inclined block rate 

When the IBR pricing is applied the electricity 
rate in RTEP is topped with a factor λ>1 if a PUP of 
house is gone beyond a predefined threshold at any 
time slot; if not RTEP rates are unaffected. IBR 
operates as a monitoring term to keep scheduling 
algorithm from inducing sharp peaks in PUP. When 
several devices of a house operating with 
overlapping ρdik and σdik are subjected to scheduling 
algorithm; it may schedule them to identical time 
slots where RTEP is offering low electricity charge, 
hence creating undesired power peaks. IBR controls 
such a situation with its penalty term and forbids 
scheduling algorithm from creating power peak 
patterns. In this research we have modified the IBR 
to reflect the penalty term only being applied when 
the PUP crosses the β scaled threshold, here β is the 
number of houses lying under current community. 
Modified IBR control is incorporated in to the RTEP 
formulated as: 

 

𝑟𝑡𝑒𝑝𝑝𝑐
(𝜏) = {

𝑟𝑡𝑒𝑝(𝜏), 𝑃𝑐 ≤ 𝑡ℎ × 𝛽𝑐

𝑟𝑡𝑒𝑝(𝜏) × 𝜆, 𝑃𝑐 > 𝑡ℎ × 𝛽𝑐
                (4) 

 
where 
 
𝑃𝑐 = ∑ ∑ pdik(𝜏)∀𝑘∈𝐶𝑗∀𝑖∈𝐶𝑋

                                                (5) 

 
Here rtep(τ) is the real time electricity price 

received from ESC for time slot τ, rtepPc(τ) is the EPP 
based on the power consumption Pc of the 
community being optimized, th is the threshold set 
to 2kW h,  and βc is the quantity of houses under 
current community.  

3.4 Formulation of CCHEMS 

Many power companies like California Edison & 
Pacific Gas & Electric (Borenstein, 2008) have been 
using IBR pricing scheme from a long time. The 
application of IBR has the effect of reducing PAR 
ratio. IBR can control the power demand of one 
house by implying its penalty factor but if the same 
time slot is occupied for most devices by neighboring 
devices than the PUP of the whole community and 
ultimately of the whole power grid will rise beyond 
desired limits. This scenario can be explained with 
the help of Fig. 5. 

 

 
Fig. 5: Cluster making power peaks 

 
For simplicity here we have only consider 

operation of one device per house for a community 
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of ‘m’ houses; devices considered are assumed to 
have their ρdik around a time slot which has lowest 
EPP than its successor slots. In such a condition all 
scheduling algorithms applied in conjunction with 
IBR will tend to settle down tdik of all houses towards 
the slot of lowest EPP. Even if the IBR succeeds to 
keep the PUP of every house under designed 
threshold; but the constellation of device tdik’s 
scheduled around lowest EPP will produce a peak in 
PUP of whole community, eventually it happens for 
whole power grid. If we consider the RTEP in Fig. 3, 
EPP is lowest around hour 4 of the day, and the 
devices of Fig. 5 will tend to be scheduled around 
hour 4 resulting in a higher peak there. This 
situation demands for a power scheduling 
methodology that can look around in the 
neighborhood while optimizing a device ATS, 
therefore, we propose our algorithm in the following 
fashion. 

As the first step we divide the DR related tasks 
from the main grid or the ESC to substations, and 
then each substation is communicating with ‘M’ 
communities. Each community may have a large 
number of houses under it and required to maintain 
its PUP with a suitable PAR ratio. Population is 
divided into communities with several clusters of 
community devices using different sizes of clusters. 
We have used three clustering parameters, which 
are defined in Table 1 along with possible set of 
values. Once optimum values for clustering 
parameters are found they are used to generate the 
clusters and then the power scheduling is done on 
clusters basis. Initially population is divided in to 
communities of size C1, all devices in the community 
are sorted according to C2, and then grouped into C3 
Clusters. Optimization process depending on 
CCHEMS will consist of following steps: 

 
Step 1: Divide the population into communities of 
size C1. 
Step 2: Sort devices of each community according to 
C2. 
Step 3: Divide each community into C3 clusters. 
Step 4: Repeat step 5 to 8 till all communities are 
scheduled. 
Step 5: Initialize the parameters tdi ∈ current cluster 
within the range [ρdi,σdi-ldi] and repeat step 6 to end 
till all clusters are done. Use sets of tdis as particles. 
Step 6: Calculate fitness by evaluating Pcj and 
Electricity Cost according to Eq. 5 for each particle.  
Step 7: If fitness of particle better than previous Pb 
than update Pb. Also update Gb with Pb if later is 
better. 
Step 7: Update particle velocities and positions 
according to Eqs. 2 and 3. 
Step 8: Terminate if criterion reached otherwise go 
to Step 6. 
Step 9: Terminate if whole population scheduled. 

 
Overall objective of power scheduling process 

can be summarized as: 
 

Minimize 𝐸𝐶(𝑃𝑐𝑗)   

𝑠. 𝑡    𝑡𝑑𝑖𝑘 ∈ [𝜌𝑑𝑖𝑘 , σdik − ldik]                                                (5) 
 
where 
EC(Pcj) = ∑ ∑ ∑ rtep

pc

144
τ=1∀k∈Cj∀i∈CX

(τ). pdik(τ)                (6) 

 
Here EC(Pcj) is the total electricity cost based on  

PUP Pcj for cluster of the community being 
scheduled, rtepPc(τ) is the rate of electricity in the τth 
time slot according to Eq. 4, pdik(τ) is the power 
rating of AOD, Cx represents the set of houses in 
current community, and Cj refers to current cluster. 
As we have divided the population in to 
communities, so the IBR penalty term will be applied 
to whole community to keep the PAR under control. 

 
Table 1: CCHEMS clustering parameters 

Parameter Name and 
Description 

Possible set of values 

C1: Community Size for 
population of 1000 houses 

10, 20, 50, 100, 200 & 250 
houses per community 

C2: Device Sorting Criteria for 
clustering 

DOTS, Device Load, DOTE & 
Devices operating till a 

threshold time slot 

C3: No. of Clusters per 
community 

2 to 7 clusters per community 
with uniform and unequal 

cluster sizes 

4. Simulation results 

This section presents the simulation results of 
our algorithm, results prove that the proposed 
algorithm reduces and smooth out peaks in load 
profile hence a better PAR is attained along with cost 
reduction. Simulation is done in two phases; in first 
phase clustering parameters are tuned over a fixed 
load profile of one day; and in the second phase 
tuned parameters are tested on a randomly 
generated population load profile for 90 days using 
PSO. Same procedure is repeated for simulation 
using GA for 45 days to show that the CCHEMS is 
independent of optimization technique and both cost 
and PAR reduction is the result of device clustering. 

We have used three performance metrics for 
comparison, namely, Percentage Cost Reduction 
(PCR), PAR Reduction (PARR) and PUP Variance to 
Mean Ratio (PVMR). These metrics are calculated as 

 

PCR =
EC−PSEC

EC
× 100                  (7) 

PARR =
PAR−PSPAR

PAR
× 100                   (8) 

PVMR = (
∑ (PUP(τ)−μPUP)144

τ=1
2

144
) ×

1

μPUP
                 (9) 

  
Here EC is electricity cost without power 

scheduling, PSEC is electricity cost after power 
scheduling, PAR is peak to average ratio without 
power scheduling, PSPAR is PAR after power 
scheduling, µPUP is mean PUP. 

Population load profile is generated with each 
house having a Maximum of 16 devices and a 
minimum of 8 for simulation purpose. Some devices 
are allowed to operate more than once a day. Model 
used for power consumption of AOD is illustrated in 
Table 2. All simulations are carried out in MATLAB 
for this study. Optimization parameters for PSO are: 
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swarm size 100, neighbor minimum fraction 0.25, 
quantity of variables 16, relative change tolerance 

value 10-6 and iteration based termination at 3200. 

 
Table 2: Typical usage parameters for AODs 

AOD 
Power 
(KWH) 

OTL 
(Time Slots) 

Operation Slots (Scattered 
B/w) 

Air Conditioner 1.5 6 ± 2, +3, +4, … 1 to 144 
Electric Heater 1.4 15 ± 5, ± 10 90 to 144 

Washing Machine 0.5 8 ± 2, ± 4 1 to 70 
Clothes Dryer 0.8 8 ± 2, ± 4 71 to 100 
Dishwasher 0.6 6 ± 2, ± 4 110 to 144 
Water Pump 1.1 6 ± 2, ± 3 60 to 90 

Electric Kettle 1.5 2 ± 1 50 to 75, 90 to 110 
Rice Cooker 0.6 4 ± 2 1 to 30, 50 to 70, 95 to 110 

    

Randomly generated one day load profile is 
subjected to PSO to find the best clustering set 
among all possible clustering combinations of C1, C2, 
and C3 given in Table 1. C3 is varied from 2 to 7 
clusters per community with both uniform and 
unequal cluster sizes. Based on PARR best 
combination of clustering is employed on randomly 
generated population load profile for 90 days. 
Results presented hereafter are simulated with 50 
houses per community, devices sorting based on 
DOTE, and 5 clusters per community. Set of cluster 
sizes preferred is 10-10-40-10-30, i.e. 1st cluster 
contains 10% of the community devices sorted 
according to DOTE and so on. Electricity pricing data 
used is taken from Ameren Illinois Power Company 
(2015) over a span from 11th April, 2015 to 9th July, 
2015. Three types of profiles are generated; first w/o 
any optimization, second scheduled with PSO and 
IBR only, last with PSO, IBR and device clustering per 
community. Optimization for 45th day PUP is shown 
in Fig. 6. 

 
Fig. 6: PUP at day 45 

 

PUP of whole population shown in Fig. 6 reveals 
that PSO & IBR only reduced PAR minimally, 
whereas proposed algorithm reduced PAR 
significantly. Sharp power consumption peaks are 
only shifted with no power consumption desert 
filling in the case of no clustering. When the 
clustering is applied, power profile tends to vary 
smoothly and deserts of power consumption are also 
reduced. 

Effect on Electricity price reduction is shown in 
Fig. 7. Clustering based technique performs much 
better than non-clustered power scheduling. Mean 
electricity cost reduction without clustering is 
45.53%, and 54.86% with clustering. 

 
Fig. 7: Electricity cost for 90 days using PSO 

 
Fig. 8 shows the effects on PAR. Without 

clustering PAR is reduced by 0.51% only, on the 
other hand power scheduling with clustering 
reduced PAR by 24.84%. Proposed algorithm 
performs much better than non-clustering 
optimization, improvement in cost reduction is 
9.33% and 24.33% in PAR reduction. When PAR is 
reduced by a magnitude of 24.84%, ESC can further 
offer consumers more incentives for playing their 
part in DR events. 

 
Fig. 8: PAR for 90 days using PSO 

 
For comparison purpose PSO is replaced with 

Genetic Algorithm (GA) which was used by Zhao et 
al. (2013). GA simulation for 45 days is also done in 
MATLAB with population size of 200, crossover 
fraction 0.75, 1600 generations, and relative change 
tolerance value 10-6. Effect on Electricity price 
reduction based on GA optimization is shown in Fig. 
9. Again the same pattern is repeated as mean 
electricity cost reduction without clustering is 
43.6%, and 53.6% with clustering. Identical results 
with application of PSO and GA prove that the 
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efficient reduction of PAR is result of clustering 
consumer devices based on operating time overlap.  

 
Fig. 9: Electricity cost for 45 days using GA 

 
Effect on PAR reduction based on GA 

optimization is shown in Fig. 10. Without clustering 
PAR is reduced by 0.77%, on the other hand power 
scheduling with clustering reduced PAR by 24.22%. 
In this case also, proposed algorithm performs way 
ahead than non-clustering optimization; 
improvement in cost reduction is 10% and 23.45% 
in PAR reduction. Proposed algorithm reduces PAR 
and smooth out PUP as shown in Fig. 6, hence 
ensures that the power system is reliable and stable. 

 
Fig. 10: PAR for 45 days using GA 

 
Effectiveness of CCHEMS in terms of smoothness 

of PUP in case of PSO is shown in Fig. 11. A flat PUP is 
ideal with zero VMR and CCHEMS was able to bring a 
VMR of 1 to 0.3, whereas non-clustered optimization 
yielded a reduction only up to 0.85 on the average. A 
smooth PUP and reduced PAR ensures the stability 
of the entire system. 

Furthermore a simulation is also performed to 
establish the effect of increase in consumer count. 
PUP of 2 consumers shown in Fig. 12 demonstrates 
that the peaks of non-clustered optimization are 
lower than those of clustered algorithm; hence non-
clustered algorithm is better when population size is 
very small. 

Population size is increased to 10 consumers in 
Fig. 13, and it is very clear that CCHEMS performs 
better than non-clustered optimization even for a 
small increase in consumer count. 

Superiority of CCHEMS in PAR reduction for 
increasing population is depicted in Fig. 14. PAR of 
non-clustered optimization is better than CCHEMS 

till the consumers are fewer than 10 and afterwards 
PAR reduction is minimal. In contrast PAR reduction 
by CCHEMS is improved continuously with the 
increase in consumers. 

 
Fig. 11: Variance to mean ratio of PUP for PSO 

 
Fig. 12: PUP of 2 Consumers 

 
Fig. 13: PUP of 10 Consumers 

 
Fig. 14: PAR against increasing consumer quantity 

 
Averaged results over 90 days in the case of PSO 

and 45 days for GA are summarized in Table 3. 
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Table 3: Summary of simulation results 

Algorithm 
Percentage Cost Reduction 

(PCR) % 
PAR Reduction 

(PR) % 
PUP Variance to Mean 

Ratio (PVMR) 
PSO Non-Clustered 45.53 0.51 0.85 
CCHEMS with PSO 54.86 24.84 0.3 
GA Non-Clustered 43.6 0.77 0.84 
CCHEMS with GA 53.6 24.22 0.3 

 
CCHEMS is approximately 9% better than non-

clustering optimization in terms of cost reduction 
capability. When the PAR reduction is considered 
results are more encouraging; CCHEMS is 24% 
better than non-clustering optimization. Last 
parameter PVMR reveals that CCHEMS is 55% 
superior to non-clustering optimization in 
smoothness of PUP. Nearly equivalent results for 
both PSO and GA suggest that the reduction in PAR 
and electricity cost is only due to segregation of 
consumers into communities and clustering their 
devices based on operating time overlap. 

5. Conclusions 

This paper exploited the available flexibility of 
power grid using PSO, modified IBR and a clustered 
arrangement of consumer devices, called CCHEMS. 
Application of CCHEMS ensures consumer benefit in 
terms of cost reduction and advantage to ESC via 
exceptional trimming in PAR. Results confirm that 
the proposed algorithm is very efficient in PAR 
reduction for large population, whereas non-
clustered algorithm of Zhao et al. (2013) failed to 
make any impact. Reduction in PVMR suggests 
enhanced stability of the whole power generation 
and distribution network. Additionally the structure 
of community based DSM proposed is also 
appropriate for consumers to share their alternate 
renewable energy sources within the community to 
reduce transmission line losses. Such sharing can be 
used to accommodate for power peaks left after 
initial power scheduling. 
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